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A B S T R A C T

The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern
analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-
sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote
relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix
factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age
prediction frameworks in healthy and clinical populations.

This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single
site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with
Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were
preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and
modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM
voxel-wise values for a range of granularities (50–690 components) and LASSO (Least Absolute Shrinkage and
Selection Operator) regression were used for age prediction. First, we compared the performance of our data
compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based
factorization and parcellation-based compression). We then investigated the impact of the granularity on the
accuracy of age prediction, as well as the transferability of the factorization and model generalization across
datasets. We finally validated our framework by examining age prediction in ADNI samples.

Our results showed that our framework favorably compares with other approaches. They also demonstrated
that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of
another dataset and that granularities between 300 and 500 components give an optimal representation for age
prediction. In addition to the good performance in healthy subjects our framework provided relatively localized
brain regions as the features contributing to the prediction, thereby offering further insights into structural
changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive
to deviance from normal structural variations in pathological aging.
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Introduction

The structural dynamics of the human brain during adulthood is a
highly complex process. Machine-learning algorithms have been used to
capture the multivariate pattern of structural brain changes (Franke
et al., 2010) that relate to age with a brain-based age prediction frame-
work. By suggesting an age for any individual based on his/her brain's
structural scan, such approaches can provide new insights into brain
plasticity, into accelerating cerebral aging, as well as into the influence of
several variables such as genes, pharmacological intervention and
cognitive training in both healthy and clinical populations. Voxel based
morphometry (VBM) is one of the most commonly used methods to
measure greymatter volume (Good et al., 2001). It provides non-negative
measures, which convey biologically meaningful information and cap-
ture brain changes related to age and pathology, as well as brain plas-
ticity related to training (Good et al., 2001; Tisserand et al., 2002; May
2011). Previous studies have shown that machine-learning methods
applied to VBM data allow prediction of brain age (Franke et al., 2010).
In these studies, brain age was estimated by applying a support vector
machine approach on the high dimensional voxels' data (Erus et al.,
2015). However, in voxel-wise representation of structural data, features
may convey redundant information and/or noise and may promote
overfitting due to a higher number of features relative to the number of
subjects (Guyon and Elisseeff, 2003; Hua et al., 2009; Mwangi et al.,
2014). To address this issue, Franke et al. (2010) examined brain age
prediction based on the simple and fast application of the principle
component analysis (PCA) to the data and subsequent brain age predic-
tion with a relevance vector machine approach. This combination
allowed them to predict the brain age with an absolute error of 5 years.
Ever since, Franke et al., 2010's framework has been employed to
investigate other concepts in relation to healthy aging (such as different
age groups i.e., children and adolescents (Franke et al., 2012), gender
differences (Franke et al., 2014)), as well as differences between healthy
aging and various neurocognitive deviancies (such as cognitive impair-
ments (Gaser et al., 2013) and psychiatric disorders (Koutsouleris et al.,
2014)).

Most of the above-mentioned studies have implemented principle
component analysis (PCA) to counter the curse of dimensionality asso-
ciated with multivariate analysis of neuroimaging data (Franke et al.,
2010, 2012, 2013; Liem et al., 2017). PCA decomposes the entire
non-negative representation into a low rank approximation with a
combination of positive and negative weights (Jolliffe, 2002), which
does not promote spatially localized components. Furthermore, the
signed components within the PCA decomposition engage complex
cancellations during the reconstruction of the original representation.
Therefore, the use of PCA-based dimensionality reduction on brain voxels
hardly results in interpretable components, which can in turn prevent the
interpretation of a predictive model based on PCA-derived components.
Non-negative matrix factorization (NNMF) is an alternative decomposi-
tion method promoting relatively localized (spatial) representation that
has gained more attention in the past years. NNMF can factorize a given
dataset into low-ranking approximations capturing a parts-based repre-
sentation (Lee and Seung, 1999). The non-negativity constraint leads to
only additive combinations of the components, which allows the
factorization to reconstruct the original high dimensional data from the
parts-based representation. As a result, NNMF provides a more inter-
pretable factorization compared to standard decomposition approaches
such as PCA and ICA (Independent Component Analysis) (Lee and Seung,
1999; Sotiras et al., 2015). Recently, Sotiras et al. (2015) investigated the
application of NNMF to neuroimaging data, by decomposing the struc-
tural MRI data with an extended version of NNMF, the orthonormal
projective non-negative matrix factorization (OPNMF). This approach
provided components that could be considered as a biologically more
meaningful parts-based representation of the brain as compared to more
standard approaches such as PCA and ICA. To note, OPNMF to some
extent, generate bilaterally symmetric spatial features, despite being an
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unsupervised data-driven factorization approach (Sotiras et al., 2017).
Accordingly, OPNMF promotes relatively localized (spatially) brain
components for post-hoc examinations compared to the standard ap-
proaches. Hence, OPNMF could open new perspectives for dimension-
ality reduction of VBM data, in particular in a prediction framework.
However, to the best of our knowledge, these perspectives have remained
unexplored. Therefore, the current study aimed at examining the appli-
cation of OPNMF to VBM data in a brain-age prediction framework. To
note, we have used the term NNMFwhen denoting to the whole family of
the technique, whereas, OPNMF when referring to the more the specific
variant, which we have employed in this study.

We first compared the performance of OPNMF-based factorization to
the performance of plain VBM data for age prediction. Then, in order to
provide direct comparison with previous studies, we evaluated different
strategies combining either PCA or OPNMF as a data compression
approach with either LASSO or RVM as sparse regression models. In
addition to the sparseness inducting methods described above, several
parcellations of the human brain have been proposed in the last two
decades (Eickhoff et al., 2017), which could potentially offer another
efficient approach for data compression into relatively localized spatial
units for age prediction. In particular, many whole-brain parcellations
have been derived from voxels/vertex functional signal at rest (RS, e.g.:
Bellec et al., 2010; Craddock et al., 2012; Gordon et al., 2016; Schaefer
et al., 2017) and such RS-based parcellation has been used for the
compression of RS functional connectivity (RSFC) data in a brain age
prediction framework (Liem et al., 2017). However, we assume that such
a representation based on functional parcellation is, by nature, less
optimal than a representation based on the structural properties of the
voxels as used in the current VBM-based framework. To investigate this
hypothesis, we compared the pattern of representation, as well as the
prediction performance of our data reduction approach OPNMF capi-
talizing on structural covariance with an independent brain representa-
tion derived from resting-state functional data in healthy adults.

OPNMF is computationally more expensive than popular decompo-
sition methods such as PCA (see methods). Nevertheless, transferring the
factorization derived from one dataset onto another dataset could save
this computational cost. Furthermore, using factorization from an inde-
pendent dataset for training or testing a prediction model can assess the
robustness of the model. We, therefore, evaluated the transferability of
the OPNMF onto an unseen dataset, that is, we examined the trans-
ferability of the components derived from one dataset onto an indepen-
dent (new) dataset, hence avoiding the time-consuming step of
factorization in the new dataset. Importantly, transferring the already
computed components onto a new dataset is particularly useful in clinical
and research practices, as the datasets often come from different sites and
scanners and may have different demographic characteristics. Recently,
Liem et al. (2017) suggested that combining datasets from different
protocols could reduce the bias of the predictive model towards the
characteristics of a single protocol. Therefore, the effect of data acqui-
sition and demographic heterogeneity on the transferability of the
components is an important aspect to evaluate in the perspective of
application of our framework in future studies. Here, we examined a
dataset from a uniform protocol constituting older subjects (age range
55–76) vs. a heterogeneous multi-site dataset whose age range covers the
adult life span (19–81, Fig. 1A)). Thus, we assessed the performance of
the prediction model trained on a dataset compressed using its own
factorization, as well as, when this dataset was compressed based on an
independent factorization (that is, when the dataset has been projected
onto a factorization derived from a different dataset).

In addition, the difference in the sample characteristics of the two
cohorts further offer the opportunity to investigate the extrapolation of
the prediction model trained on one dataset onto an independent dataset.
That is, in the present study, we investigated both, the transferability of
the components among datasets and the generalization of the prediction
among datasets, on the age prediction performance. Relatedly, one
crucial objective in age prediction is the identification of aging



Fig. 1. The two healthy datasets and the non-negative matrix components derived the these datasets. A: Overview of the sample characteristics of the two datasets
(i.e., range of age distributed in each dataset, as well as the scanner protocol). B: Brain spatial representation of the factorization derived from the two datasets at two
different resolutions. C: Similarity between the factorizations derived from the two datasets.
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trajectories deviating from normal range, i.e., pathological aging. Pre-
vious studies have shown dramatic brain structural alterations in par-
ticipants with deviations from healthy aging such as Mild Cognitive
Impairment (MCI) and patients with pathological aging such as Alz-
heimer's Disease (AD) resulting in systematic overestimation of their age
by an algorithm trained on healthy populations (Davatzikos et al., 2009;
Gaser et al., 2013; Moradi et al., 2015). Therefore, as a validation of our
framework for clinical research, we further evaluated its performance in
age prediction of healthy and clinical samples from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database.

To sum up, in this study, we aimed to evaluate a new framework for
brain-age prediction, which used dimensionality reduction of VBM data
using OPNMF followed by a sparse regression model. In order to evaluate
the advantages and limitations of this framework over the other ap-
proaches proposed in the previous studies, we compared the performance
of our model with 1) model based on voxel-wise VBM data (uncom-
pressed VBM data), 2) model based on PCA data reduction and 3) model
based on data reduction based on RS-based parcellation. In the sake of
reducing computational cost in future studies, we examined the trans-
ferability of the OPNMF between two independent datasets differing in
demographic characteristic and acquisition protocols. Importantly, the
localized properties of the components in our framework allowed us to
explore brain regions contributing to the predictiveness in the healthy
samples. Finally, we tested the performance of our prediction model on a
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clinical sample, in order to validate the predictive utility of our frame-
work in clinical research.

Material and methods

Sample characteristics and preprocessing

We used structural MRI data from two large, independent datasets.
The first was obtained from the population-based 1000BRAINS study
(Caspers et al., 2014) and represents a single-site assessment of 693 older
adults (age: 55–75 years; 53% males) using the same imaging protocol
for all subjects. The other “MIXED” dataset consists of 1084 healthy
adults (age: 18–81 years; 51% males) that were derived by pooling data
from many different individual studies at various sites (Fig. 1A; for
further details see Supplementary methods). Furthermore, in order to
validate our framework of age prediction on clinical data, we included a
dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (www.loni.ucla.edu/ADNI). This ADNI dataset sample included
244 cognitively normal elderly subjects (HC, age: 55–90; 48%males), 64
mild cognitively impaired (MCI) subjects (age: 55–87; 60% males), and
163 Alzheimer's disease (AD) subjects (age: 56–91; 56% males), for
further details see Supplementary methods.

Structural MRI data was preprocessed with the VBM8 toolbox (http://
www.neuro.uni-jena.de/vbm8) to derive voxel-wise greymatter volumes

http://www.loni.ucla.edu/ADNI
http://www.neuro.uni-jena.de/vbm8
http://www.neuro.uni-jena.de/vbm8
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for each subject of the two datasets using standard settings. T1-weighted
structural brain images were normalized by the high-dimensional DAR-
TEL normalization (Ashburner, 2007) combined with tissue class seg-
mentation and bias field correction. The normalized grey matter
segments were modulated for non-linear transformations only and
smoothed with an 8-mm FWHM Gaussian kernel. The local grey matter
volumes (following adjustment of head size given that the affine part of
the registration did not enter the modulation) were then extracted in a
whole-brain grey matter mask (with a threshold of 0.2 to eliminate the
voxels with partial volume effect (Ashburner et al., 1985)) and for each
sample individually stored in a Number of subjects by Number of voxels
matrix (with Number of voxels¼ 344,383). These matrices provided the
input for the age-prediction model based on the full (uncompressed)
VBM data as detailed in section 2.4 and the input to which matrix
factorization (i.e., non-negative matrix factorization and principle
component analysis) and resting-state (RS) based parcellation (see
below) were applied.
Data reduction

Orthonormal projective non-negative matrix factorization
We used the same orthonormal projective non-negative matrix

factorization (OPNMF) approach (Yang et al., 2007; Yang and Oja, 2010)
as described by Sotiras et al. (2015). OPNMF factorizes a data matrix ‘X’
into two non-negative sub matrices (W and H) representing the sparse
components (the dictionary i.e., W of size, Number of voxels by Number
of components) and the subject-specific loading coefficients (H of size,
Number of components by Number of subjects) in the ensuing low-rank
space, min

W�0;H�0
k X� WHk2F, which minimizes the squared Frobenius

norm (i.e., reducing the reconstruction error), subject to the conditions
H ¼ WTX and WTW ¼ I where, k :k2F referred to the squared Frobenius
norm and I denotes the identity matrix.

To summarize the factorization process, W is first initialized through
non-negative double singular value decomposition (NNSVD; cf. Boutsidis
and Gallopoulos, 2008)). Later, W is iteratively updated with the multi-
plicative update rule, until it converges to an optimum solution. The
multiplicative update rule is modified as reported by Yang and Oja
(2010), to satisfy the additional constraints of an orthonormal projection

basis function, W'
ij ¼ Wij

ðXXTWÞij
ðWWTXXTWÞij

, where, i¼ 1 … Number of voxels,

j¼ 1 … Number of components. Finally, projecting X onto W to obtain a
solution that minimizes the reconstruction error yields H. Following
OPNMF, the VBM data are represented by two matrices, denoting the
sparse components (W) and the corresponding subject-specific loading
coefficients (H). The former (W) represent the latent structure in the data,
the latter (H) represents the individual volumetric data in the low-rank
space spanned by these components and provides the features for the
age-prediction model. Of note, the highest possible OPNMF granularity is
the lowest dimension of the input matrix (X) (which in our case is the
number of the subjects in 1000BRAINS dataset being the smallest sample
size). Accordingly, in this study, to explore the effects of different gran-
ularity, i.e., number of components, on prediction accuracy, we
computed and evaluated compressions employing 50 to 690 components
in steps of 25.

Principle component analysis (PCA)
PCA is one of the most commonly used dimensionality reduction

techniques and, accordingly, has been used in previous studies exam-
ining age prediction based on structural MRI data. In order to provide a
direct comparison of the OPNMF's performance with the previous in-
vestigations, we ran PCA on the voxel-wise VBM data by using the PCA
function implemented in MATLAB 2014. This transformed the high-
dimensional voxel wise data (i.e., X) into low-rank approximations
using an orthogonal linear transformation. The resulting PCA based low-
rank approximations represented the principle components of the data
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(computed by solving an eigenvalue problem) arranged in descending
order of the variance explained by each component (Jolliffe, 2002). The
subject-specific loading coefficients were obtained by projecting the
high-dimensional voxel wise data onto the component space (eigenvec-
tors, i.e., PCA based low-rank approximations) thereby providing the
features for age-prediction model. Finally, we computed and evaluated
the effect of PCA compressions on prediction accuracy, in the range of
granularity aforementioned for OPNMF (i.e., 50 to 690 components in
steps of 25.)

Resting-state (RS) based parcellation
Recently, Schaefer et al., 2017 reported a parcellation based on RS

fMRI providing neurobiologically-valid brain parcels by capitalizing on a
new hybrid approach integrating the local gradient approach for
boundary-mapping with a global similarity approach. As this atlas does
not cover subcortical and cerebellar structures, we added these from
another widely used RS fMRI parcellation (BASC, Bellec et al., 2010).
This resulted in a whole brain parcellation of 470 parcels that was used
here as an alternative dimensionality reduction approach for VBM data.
For each subject, an average grey matter volume within each parcel was
computed and used as inputs for the age-prediction model.

Sparse regression model

We primarily used LASSO (Least Absolute Shrinkage and Selection
Operator) for learning a (sparse) linear regression model predicting the
subjects' age from their structural data as compressed in the loading
coefficients (as implemented in the ‘glmnet’ package, https://www.
jstatsoft.org/article/view/v033i01 (Tibshirani, 1996)). LASSO regu-
lates the parameters (alpha and lambda) to optimize the sparsity and the
complexity of the regression model to improve the performance (i.e.,
prediction accuracy) and interpretability of the model (Zou and Hastie,
2005; Zhang and Huang, 2008). An inner loop was incorporated to
optimize the hyper-parameter (lambda). LASSO with alpha set to 0.99
and lambda that gives minimum mean cross validation error of the inner
loop was employed for predicting the age in our study.

As an alternative approach to LASSO, Relevance Vector Machine
(RVM; Tipping, 2001) has been commonly implemented by the previous
studies exploring prediction of age using structural MRI. Therefore, we in
this study performed an additional comparison between LASSO and RVM
regression models. For doing so, statistical learning of the sparse
regression model employing RVM was implemented using the Sparse-
Bayes package (http://www.miketipping.com/index.htm). This
approach uses a probabilistic Bayesian framework with specific priors
over the parameters, which favors sparse prediction model. The algo-
rithm iteratively and automatically optimizes the parameters and hyper
parameters, hence reducing prior control on the parameters. As kernel,
we chose a multivariate zero-centered Gaussian with standard deviation
estimated by the algorithm. This RVM implementation from the Spar-
seBayes package has been shown to improve the initialization procedure,
which maximizes the likelihood function and hence accelerates the
procedure (Tipping and Faul, 2003).

Prediction analyses

Previous studies of age prediction from MRI data in life span cohorts
have used linear regression model (Franke et al., 2010, 2012; Gaser et al.,
2013; Mwangi et al., 2013; Franke et al., 2014; Koutsouleris et al., 2014;
Erus et al., 2015; Liem et al., 2017). For the sake of comparability, we
likewise used a (sparse) linear regression model for predicting the sub-
jects' age from their structural data as compressed in the loading co-
efficients. Furthermore, in the present study, combining sparse
decomposition method with a sparse regression model came with the
advantage of providing an anatomically well interpretable model for
estimating age based on a limited number of spatially compact structural
features.

https://www.jstatsoft.org/article/view/v033i01
https://www.jstatsoft.org/article/view/v033i01
http://www.miketipping.com/index.htm
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Model generalization was evaluated by 10-fold cross-validation. That
is, the dataset was randomly split in ten equal parts that each, in turn,
served as the test set for the model fitted on the remaining 9/10th of the
data. To reduce dependency on the cross-validation split, this procedure
was replicated 100 times. Splitting the dataset into ten equal parts has
been initiated every time within each repetition, which allowed us to
train the model on different training samples in each repetition. Predic-
tion accuracy was quantified by the mean absolute deviation (across
subjects) between real age and predicted age (averaged across
Fig. 2. Different prediction approaches evaluated in the study. A&B illustrate the
components derived from itself (A) MIXED dataset (B) 1000BRAINS. C&D illustrate
using the components derived from the other dataset (C) MIXED dataset projected
factorization derived from MIXED. E,F&G illustrate the approaches utilizing an indep
components derived from itself (E) training the model on 1000BRAINS dataset project
(F) training the model on OldMIXED dataset projected on to OldMIXED based factoriz
MIXED dataset projected on to MIXED based factorization and later validate the mo

398
repetitions), and also, the correlation between the real age and that
average of the predicted (across repetitions) in previously unseen sub-
jects from their VBM data.

Assessed prediction approaches

We note that performing OPNMF only on the training dataset in each
cross-validation fold would be computationally expensive and hence
practically infeasible. But prediction performed on loading coefficients
procedure of a 10 fold cross-validation when compressing a dataset using the
the procedure of a 10 fold cross-validation performed on features extracted by
on to 1000BRAINS based factorization, and (D) 1000BRAINS projected on to

endent dataset to validate the model trained on the dataset compressed using the
ed on to its own factorization and later validate the model on OldMIXED dataset,
ation and later validate the model on 1000BRAINS and (G) training the model on
del on 1000BRAINS.
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obtained from the OPNMF decompositions including the entire sample
(including the 1/10th that is denoted the test-set in the respective fold)
could bias the cross-validation towards overly optimistic performance
estimates. Given this consideration would also hold for all future uses of
our approach, we were particularly interested in investigating whether
components derived from one dataset were also good encoders (repre-
sentative) for the structural features of another dataset.

Consequently, we performed cross-validation analyses using the
loading coefficients derived from OPNMF of that particular dataset as
(an overly optimistic) reference (Fig. 2: A&B) but importantly focused
on assessing the possibility to predict subjects' age after projecting the
raw VBM data on the component space estimated for the other dataset
(Fig. 2C&D). That is, we derived the OPNMF components of the
1000BRAINS dataset, and performed cross-validation within the MIXED
dataset projected onto the components estimated from the
1000BRAINS. This approach has the advantage that the subjects in the
test set were truly independent and have not been involved in any prior
processing steps. In addition, we could investigate the effects of dataset
(in-) homogeneity, as the 1000BRAINS data comes from a single-site
study with uniform protocol, whereas the MIXED dataset was deliber-
ately chosen to be very heterogeneous. We would thus expect that the
components derived for the MIXED dataset show a better generalization
than those from the 1000BRAINS dataset, i.e., projecting the
1000BRAINS data onto the components from the MIXED dataset will
yield prediction models that are closer in performance to the (opti-
mistically biased) analysis with the projection of the data components
derived from the MIXED data itself.

Later, we also tested whether the actual models transfer between
datasets by deriving the OPNMF components in one dataset (e.g.,
MIXED), fitting the sparse regression model in that same dataset
(MIXED), projecting the other dataset (1000BRAINS) onto the factor-
ization of the former (MIXED) and applying the prediction model trained
on that (MIXED) data (Fig. 2: E, F&G). In this context, we note that the
1000BRAINS dataset has a more restricted age-range (55–76) than the
MIXED dataset (18–81). Therefore, we evaluated the model transfer
between the portion of MIXED subjects corresponding to 1000BRAINS
age range (55–75; i.e., OldMIXED), see Fig. 2: E&F. The computational
times for each prediction approach at different levels of granularity are
reported in supplementary material (Table S3).

Finally, our age estimation framework was validated using the ADNI
database. Here we compared the estimated BrainAGE between healthy
controls (HC¼ , subjects with mild cognitive impairment (MCI) and
Alzheimer's disease (AD), given that apparent older brains have been
previously demonstrated in the latter two groups (Franke et al., 2010;
Franke and Gaser, 2012). As AD patients sample mainly consisted of
older subjects, the prediction model was trained on the aforementioned
samples of elderly subjects (i.e., 1000BRAINS or MIXED_55–90). In
detail, all data (training sample and ADNI) were projected onto the
factorization derived from the respective training sample (either the
1000BRAINS or MIXED). The model was trained on the each of the
training sample (1000BRAINS or MIXED_55–90 (i.e., Subjects above 55
years from MIXED dataset)) and then evaluated it in the ADNI data. In
line with previous studies (Davatzikos et al., 2008; Franke et al., 2010;
Franke and Gaser, 2012; Moradi et al., 2015), we hypothesized, that for
the ADNI controls, the brain age gap estimation (BrainAGE), i.e., the
difference between the predicted age and the chronological age, should
be centered around zero. In turn, MCI subjects and in particular AD pa-
tients were expected to show an increased BrainAGE score.

Identification of the regions influencing the prediction

As noted above, combining a sparse decomposition yielded compact
regional modes with a sparse regression model (LASSO) has the advan-
tage of providing regionally specific relevant features. As a final step
allowing the neurobiological interpretation of our age-prediction model,
we identified those parts of the brain that underpinned the reported
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predictions. As we performed 100 replications of a 10-fold cross-
validation, in total 1000 models were computed per granularity (num-
ber of components). We then quantified the contribution of each
component by the fraction of these 1000models in which the coefficients
assigned by the predictive model for the respective component was non-
zero. The components that contributed in at least 95% of all models were
identified as the components that were robustly part of the predictive
model (Fig. 3 (5)). Concretely, we first identified the components
consistently contributing to the prediction as defined by non-zero beta
value in 95% of the models. Second, the components were mapped to the
brain space at each respective level of granularity. That is, we built a
“contributor map” at each level of granularity, in which the voxel values
represent their (binary) contribution (Fig. 3 (5)). Combining those maps
(by summing up the values) resulted in a contributor “summary” map in
which a non-zero value represents a contribution in at least 95% of the
1000 prediction models) and higher value represent more overlap across
different granularities (Fig. 3 (6)). As we found that prediction perfor-
mance stabilizes after around a granularity of 300 components (Fig. 6),
only the contributor maps of granularity>300 components were merged
into a summary map. Given that the relationship between the OPNMF
components at high granularities could be hierarchically inconsistent,
this approach yielded a higher effective resolution of the relevant brain
areas than the actual granularity of the factorizations itself, and hereby
alleviated the reliance of the spatial inference on any particular set of
components.

Results

Brain age estimation using the uncompressed VBM data

Training LASSO models on the full, i.e., uncompressed voxel-wise
VBM data allowed to predict the age of previously unseen subjects
with relatively high accuracy. For the 1000BRAINS data, the mean ab-
solute error (MAE) between real and predicted age of the test set was 3.4
years. While for the MIXED dataset, the MAE was 4.9 years. While these
numbers compare favorably with previous reports, Fig. 4 illustrated the
critical drawback of using sparse regression models on voxel-wise data.
That is, isolated voxels scattered across the brain were selected as rele-
vant features by the prediction model. In addition to being computa-
tionally prohibitive, the ensuing models are basically uninterpretable as
the predictions were driven by individual voxels (Fig. 3).

Compression of brain age estimation using different compression methods
and sparse regression models

Fig. 5 illustrated the performance of each of the four combinations of
approaches. Across different cross-validation approaches (Fig. 5A),
OPNMF either slightly outperformed or remained analogous to PCA,
especially at higher level of granularity. In particular, when the
factorization has been transferred from one dataset to another dataset
(Fig. 5A: plots on the right compared with plots on the left), OPNMF
reported more accurate age prediction with stable performance across
different levels of granularity compared to PCA. Thus, we could infer
from our results that OPNMF derived from one dataset could provide a
better representation of the structural data of an independent dataset
than PCA. With respect to the sparse regression approach, LASSO and
RVM resulted in comparable cross-validation accuracies, but LASSO was
shown to yield superior performance when predicting age across sam-
ples (Fig. 5B), irrespective of the employed factorization. Additionally,
the application of LASSO together with OPNMF performed better than
the other combinations in most of the scenarios, supporting the com-
bination of LASSO with OPNMF for age prediction analyses. Accord-
ingly, we focused on investigating the brain age prediction using LASSO
sparse regression model, in the subsequent analyses (such as, compari-
son of OPNMF with a previous RS-parcellation, examination of the
OPNMF transferability, identification of the relatively localized features



Fig. 3. Main processing steps for age prediction based on GMV and the post-hoc examination of regions contributing to the prediction. 1) Voxel-based morphometric
(VBM) data for each subject are used as input for OPNMF 2) Following OPNMF, the VBM data are represented by two matrices, denoting the corresponding subject-
specific loading coefficients (H) and the sparse components (W). 3) Application of sparse regression model, in which H provides the features for the prediction model
4) Evaluation of the prediction model using a test sample (different prediction models described in section 2.5 & Fig. 2). 5&6) Identification of the regions contributing
in the prediction analysis; 5) First the respective components with non-zero coefficients assigned by the prediction models were identified. Then, we built a
“contributor map” at each level of granularity, in which the voxel values represent their (binary) contribution in at least 95% of the models. 6) Combining those maps
(by summing up the values) resulted in a contributor “summary” map in which a non-zero value represents a contribution in at least 95% of all the prediction models)
and higher value represent higher overlap across different granularities. As our analyses revealed that prediction performance stabilizes around 300 components
(Fig. 6), only the contributor maps of granularity >300 components were merged into the summary map.
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contributing to the prediction analyses in healthy datasets and finally
validation of our framework (i.e., combination of OPNMF with sparse
regression model) in a clinical dataset).

As suggested by our comparative analyses, based on the prediction
accuracies reported by the LASSO (sparse) regression model, we
compared the performance of the OPNMF factorization with a RS-
parcellation of the brain (Bellec et al., 2010; Schaefer et al., 2017; cf
Section 2.2.3). As illustrated in Fig. 6, at comparative levels of granu-
larity (i.e., 475 OPNMF factors vs. 470 brain parcels), the age prediction
model tended to be more accurate when the data have been compressed
with OPNMF than when the data have been compressed based on an
independent representation derived from RS fMRI signal. Nevertheless, it
has to be noted that the latter also compressed data into localized brain
parcels, which by itself showed surprisingly good performance, sug-
gesting that different spatial representations into local components can
be efficient (see discussion). In the scope of the current study, altogether,
our preliminary comparative analyses supported the use of OPNMF for
data compression in an age prediction framework.
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Influence of different datasets on the OPNMF & age prediction

As previously reported, OPNMF provided sparse and spatially
compact components, which essentially reflect local structural covari-
ance (Fig. 1B). While not the primary focus of this work, we noted that
labeling each grey-matter voxel by the most strongly reflected compo-
nent, provided a map of the human brain that in many aspects seemed to
resemble those derived from other modalities. Across the whole range of
granularity, although there seems to be a decent agreement, these maps
were slightly different between both investigated datasets (1000BRAINS
and MIXED) as reflected in the adjusted rand index (aRI, Fig. 1C). This
latter quantifies the similarity between the clusters (Hubert and Arabie,
1985; Santos and Embrechts, 2009)) between the respective parcellation
and can range between þ1 and �1, with 1 reflecting perfect spatial
correspondence, 0 indicating spatial agreement with certain probability,
and smaller than 0 representing disagreement which is worse than con-
tingency (Hubert and Arabie, 1985)). However and more importantly,
both factorization (1000BRAINS and MIXED) at the similar level of



Fig. 4. Chronological age plotted against the age predicted using the high-dimensional VBM data. The lower figure exhibits the isolated voxels that contributed in the
prediction analysis. Here, the voxels, which contributed in all the models across 25 replications of 3-fold cross-validation, are displayed.
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granularity (i.e., 475 granules) showed good convergence with the
RS-parcellation (470 parcels) with, respectively, aRI¼ 0.28 and
aRI¼ 0.29 (Fig. 5).
Brain age estimation using the OPNMF-compressed VBM data

Considering the models based on the loading coefficients for com-
ponents derived from the (full) data of the same sample (rendering data
compression not independent from the latter cross-validation), several
important observations can be made. First, while very low-rank ap-
proximations only yielded poor prediction accuracy, the mean absolute
error (MAE) quickly declines with increasing granularity, i.e., higher
number of components. Once the number of components passes
approximately 300–400 (Fig. 6), however, prediction accuracy seems to
remain stable or at best improve asymptotically.

Model validation within the same dataset using a cross-validation approach
In details, these unbiased models yielded an overall MAE of 3.6 years

(males: 3.7 and females: 3.6) and an overall correlation of 0.65 (male:
0.62 and female: 0.61) between real and predicted age in the
1000BRAINS data (using components derived from the MIXED dataset;
Table S1 & Table S2). For the MIXED data, we found an overall MAE of
6.1 years and a correlation of 0.88 (MAE of 6 and r¼ 0.88 in the males
and MAE of 6.3 and r¼ 0.86 in the females) when using components
derived from the 1000BRAINS dataset (see Table S1 & Table S2 for
detailed results; also see the supplementary material for the discussion on
association between the two measures (i.e., MAE and correlation) of the
performance (Fig S6)). Further examining the prediction performance
across the different scanning sites forming the MIXED dataset (16
different sites) revealed that in most of them (14 sites) the MAE varied
between 5 and 7 years and the MAE from the two other sites were 4 years
and 9 years (of note, the scanning protocols used in these latter remained
analogous to the 14 other sites, i.e., we did not note any specific technical
factor accounting for the differences in prediction accuracies). Overall,
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these results showed the stability of our prediction framework across
genders and scanning sites.

Model validation with prediction in independent datasets
Transfer of the whole pipeline (factorization and model training) was

evaluated by predicting the age of the subjects in the respective other,
independent sample (Figs. 6B and 7B). In our study, transferability of the
prediction model was evaluated in two different aspects, extrapolation of
the prediction model onto an independent dataset, which differs in
subjects' demographic characteristics, such as age, and then onto an in-
dependent dataset, which differs in scanner protocols. In the context of
dataset (in-) homogeneity from different age groups, models trained on
broader age range of the heterogeneous dataset (MIXED) showed
reduced precision of age prediction in an independent dataset
(1000BRAINS) while the model trained on a restricted age range for this
restricted heterogeneous dataset (OldMIXED) was more accurate in
predicting the age of the latter independent dataset (1000BRAINS). In the
context of dataset (in-) homogeneity from different protocols, our results
surprisingly showed that models trained on single-site study
(1000BRAINS) also performed efficiently, when predicting the age of
highly heterogeneous dataset (OldMIXED). In contrast, models trained
on the 1000BRAINS data consisting exclusively of older subjects showed
a very poor performance when trying to predict age of the younger
subjects in the MIXED sample (Fig S2). While the model correctly pre-
dicted the young subjects to be younger than the young examples in the
training set, it was grossly inaccurate in predicting how much younger
they actually were. Put pointedly, having no information about how a 20-
year old brain looks like, a model trained on subjects aged between 55
and 76 can only derive that the subject in question should be younger
than the youngest it has seen in the training data (Fig S2). Thus, testing
for generalization of the model to an independent dataset showed good
prediction accuracy for the subjects within the training sample's age
range (Figs. 6B and 7B), but also indicated that the prediction model
cannot extrapolate to the subjects whose age is (far) beyond the training



Fig. 5. Illustration of the mean absolute error of the prediction models using different compression methods with various sparse regression models (LASSOþOPNMF
in black; LASSOþPCA in blue; RVMþOPNMF in red; RVMþPCA in magenta) at different levels of granularity, and separately for each prediction approach. A)
represents the approach where 10 fold cross-validation is performed and B) illustrates the approaches in which an independent dataset is used to validate the model
trained on the dataset compressed based on the components derived from itself.
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samples age distribution (Fig S2).
As ultimately one main application of our framework will be research

in clinical populations, we also tested our framework in the ADNI dataset.
Here, the mean BrainAGE scores (reflecting, for each subject, the
discrepancy between brain-based estimated age and chronological age)
was zero in the healthy control group (for models trained on either the
1000BRAINS or the MIXED_55–90 datasets). In contrast, BrainAGE
scores were 6.2 years (for models trained on 1000BRAINS) and 5.4 years
(for model trained on MIXED_55–90) in the MCI group, indicating that
these subjects' brains looked about 5–6 years older. Finally, the BrainAGE
scores reached 8.5 years (for models trained on 1000BRAINS) and 10.7
years (for models trained on MIXED_55–90) in the group of patients
diagnosed with Alzheimer's disease. These results, illustrated in Fig. 8
demonstrated that our framework can accurately capture the range of
normal structural variation relating to age in healthy subjects and
building on this normal range, captures dramatic deviance in both pa-
tients with Mild Cognitive Impairment and patients with Alzheimer's
disease.

Identification of the regions influencing the prediction

The framework we examined in this paper, i.e., applying a sparse
regression model onto the sparse decompositions, should yield rather
confined and hence neurobiologically interpretablemaps of brain regions
contributing to the age prediction. In more detail, as previously noted,
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the OPNMF components themselves were circumscribed rather than
representing a mixture of voxel-wise positive and negative weights as
would be the case for PCA (cf. Sotiras et al. (2015), Sotiras et al. (2015)).
LASSO then selected a small number of these spatially confined compo-
nents for the actual prediction. This allowed us to identify, which brain
regions consistently contributed to the age estimation. As demonstrated
in Fig S7, many of the regions that were selected by the models are also
the regions that show the highest correlation with age. This suggests that,
to some extent, the observed contributors are consistent with age-related
GMV changes.

As illustrated in Fig. 9, more brain regions were engaged in estimating
age in the MIXED as compared to the 1000BRAINS dataset, which could
be expected given the much broader age distribution. More specifically,
the regions contributing to the prediction model in the 1000BRAINS
cohort (older subjects) included regions around the central sulcus, the
inferior temporal cortex, the occipital and posterior temporal cortices
and area 44. Regions contributing to the predictions in this older adult
cohort also included bilateral midline areas such as, the superior medial
frontal gyrus, the medial fronto-orbital regions, the anterior and middle
cingulate cortices and the retrosplenial cortex. Furthermore, the pattern
of regions weighting in the prediction model in this cohort further
included bilateral subcortical regions such as the thalamus, the basal
ganglia and the posterior hippocampus, as well as the bilateral cere-
bellum. On the lateral surface, the pattern included regions in prefrontal
regions (frontal areas anterior to the precentral gyrus), oribitofrontal



Fig. 6. Illustration of the mean absolute error of the prediction models using different spatially localized compression models (OPNMF and RS-parcellation) with
sparse (LASSO) regression model at different levels of granularity, and separately for each prediction approach. A) represents the approach where 10 fold cross-
validation is performed and B) illustrates the approaches in which an independent dataset is used to validate the model trained on the dataset compressed based
on components derived from itself.
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regions and temporal poles. In contrast, the pattern of regions for age
prediction in the MIXED dataset (heterogeneous dataset covering the
whole life span) was less spatially specific, covering most of the brain
lateral surface bilaterally (including for example the whole bilateral
middle and superior frontal gyri, as well as the bilateral posterior supe-
rior and inferior parietal cortices), almost the entire medial structures,
and, the bilateral anterior hippocampus and amygdala. In other words,
the prediction models of age in this heterogeneous dataset built on most
of the brain regions.
Supplementary analysis

Spatial smoothing on the VBM data promotes homogeneity of the
data by attenuating small differences between individuals. In turn, age
prediction may rely on those subtle effects. Thus, we also evaluated,
whether the subjects' age could be predicted based on the unsmoothed
VBM. As could be expected from the aggregation of individual voxels into
components, refraining from smoothing prior to projection resulted in
highly similar results as shown above for the smoothed data (see Sup-
plement, Table S4 & Fig S1).
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Discussions

In this study, we showed that non-negative sparse coding through the
combination of data compression using OPNMF with LASSO regression
could predict age of previously unseen subjects in an unbiased manner
from structural neuroimaging data. Several key observations emerged
from this work. i) The precision of age prediction compares well to that
based on uncompressed, i.e., voxel-wise VBM data and to that based on
non-sparse factorization (PCA). ii) Even though the components estimated
for the two datasets differed from each other, the (unbiased) prediction
accuracy after projection onto the respective other set of components is
only slightly worse than the (biased) accuracy obtained when performing
factorization of the entire dataset that was later used for cross-validation.
iii) OPNMF-based brain partitions show some convergence with an in-
dependent parcellation based on resting-state (RS) fMRI, but the former
gave slightly better prediction performance iv) Finally, in contrast to ap-
proaches used in previous age prediction studies, combination of data
compression using OPNMF with sparse (LASSO) regression yields a su-
perior interpretability of the weight maps allowing interpretations about
the mechanisms underlying the prediction.



Fig. 7. Chronological age plotted against the age predicted using the VBM data compressed with OPNMF. The predicted age plotted in this figure is an average of the
predicted age across different levels of granularity.

Fig. 8. Validation approach in ADNI samples.
BrainAGE scores (reflecting the difference between
predicted age and the chronological age) are showed
for all the three subsamples (i.e., Healthy controls
(HC), Mild Cognitive Impairment (MCI), Alzheimer's
Disease (AD). The left plot refers to the approach in
which the model was trained on OldMIXED sample
compressed using factorization derived from the
whole MIXED sample. The right plot refers to the
approach in which the model was trained on
1000BRAINS compressed using factorization derived
from 1000BRAINS.
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Prediction from uncompressed VBM data

Our results showed that age prediction of unseen subjects using the
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full (uncompressed) VBM data reported only slightly better prediction
accuracies than one based on the (OPNMF) compressed (Table S1). This
comparable level of performance for compressed and uncompressed data



Fig. 9. Summary map of the regions that contributed in the prediction analysis when performing 10-fold cross-validation and compressing the dataset using the
components derived from the other dataset, in which brighter shade represents more frequently used parts of the brain. Plain anatomical slices are displayed as
reference in the top raw. The middle raw illustrates the MIXED dataset compressed with the 1000BRAINS-based factorization while the bottom row illustrates
1000BRAINS dataset compressed with the MIXED-based factorization.
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has also been observed in previous brain age studies employing PCA
compression (Franke et al., 2010; Liem et al., 2017). However, in the
current study, predicting age using sparse regularization (LASSO) pre-
diction model on uncompressed VBM data is highly inefficient in terms of
memory usage, especially for large datasets (for example, MIXED dataset
with 1084 subjects). In particular, the memory load of this
high-dimensional approach (>700 subjects x 344383 voxels) only
allowed a 3-fold cross-validation on a high-performance server. While
high dimensional voxel wise data could also lead to overfitting of pre-
diction model, due to the larger number of features than subjects (i.e.,
several models potentially could fit the same data), comprehensively
investigating this issue was not possible in the present study due to the
computational limitations. Beside this still open issue, the recent avail-
ability of MRI data in very large sample sizes, i.e., for thousands of
subjects (e.g. (Miller et al., 2016),) and the growing interest for the
prediction of phenotype or behavioral measures from MRI data,
dramatically underpin the need of dimensionality reduction preserving
prediction accuracy (Davatzikos, 2016).

The key limitation of voxel-wise analysis, however, is the poor inter-
pretability of the relevant features. As shown in Fig. 4, the sparse regres-
sionmodel on the voxel-wise data in our study highlighted isolated voxels
scattered over the brain as relevant features for predicting subjects' age.
Nevertheless, the individual anatomical correspondence of a particular
voxel chosen by the prediction model, can be variable across subjects
(Davatzikos, 2004). In addition, LASSO regression is known to perform
reliable feature selection, providing that the features have followed
“irrepresentable condition” (Zhao and Yu, 2006). That is, features should
be independent of each other in order to obtain reliable outcomes.
Therefore, when LASSO is applied to voxel-wise VBM data, the isolated
voxels from the highly correlated voxel-wise VBMdata contributing to the
prediction cannot really be interpreted. In other words, voxel-wise sparse
regression models pose a decoding problem (Kampa et al., 2014). Thus,
the poor interpretability of prediction models based on raw VBM data
(Lakkaraju et al., 2016), in addition to their computational costs, advocate
for data compression, ideally with a factorization approach that offers
interpretability of the representations such as the current implementation
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of OPNMF on VBM data for prediction of brain age.
Compression of brain age estimation using different compression methods
with various sparse regression models

When comparing the performance of OPNMF with PCA, particularly
at higher level of granularity, our results demonstrated that OPNMF
either slightly outperformed or remained analogous to PCA. Any data
reduction procedure aims to address the curse of dimensionality without
any loss of information. In this context, both PCA and OPNMF provide
low rank approximations representing the most influential structure
within the original data, however, each decomposition method captures
different aspects of the similar information (PCA captures the compo-
nents with the most variance explained across the dataset, while OPNMF
captures the spatially more localized components that consistently co-
vary across the dataset), leading in the present study to comparable
performance of both approaches in age prediction. Importantly, our re-
sults also further showed that OPNMF provided more stable performance
at high granularities (>200), when compression is transferred across
datasets (Fig. 5A: cf. right vs. left plots). This finding confirms previous
hypotheses that the ‘projectivity’ of OPNMF supports the efficient
transferability of the factorization onto a new unseen dataset (Yuan et al.,
2007). Therefore, we would argue that OPNMF, compared to PCA, en-
hances the generalizability of the low rank approximations onto an in-
dependent dataset. Thus, OPNMF not only promotes relatively localized
brain representation, but also yields more generalizable low-rank
approximation than PCA.

Our evaluation further revealed that LASSO regularization performed
either similarly or slightly better than RVM. Both LASSO and RVM yield
sparse regression models with the advantage of performing feature se-
lection by capitalizing only on the features that improve the prediction
accuracy and allow comparable accuracies. However, an additional
argument for the use of LASSO, this model allows the selection of the
regularization parameter. Hence, LASSO optimizes the trade-off between
stability and interpretability of the prediction model (i.e., optimizing the
sparsity) by tuning the regularization parameter (i.e., alpha), which
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linearly combines the L1 and L2 penalties (cf. Zou and Hastie, 2005 for
more technical details). Therefore, the LASSO regression model can
convert the sparse regression model into a purely non-sparse model
(using the elastic net regularization model) and can therefore be
considered as a relatively more flexible regression model than RVM.
Furthermore, Bunea et al., 2011 demonstrated that LASSO could be
implemented in many conditions including when the feature size is
exceeding the sample size for prediction analyses. Indirect support for
this property of LASSO can be seen in top left plot of Fig. 5B, in which
LASSO works particularly better than RVM after crossing the granularity
level of 250 (with the training sample size approximating 230 subjects in
this specific case). As reduction techniques have shown best prediction
accuracies at higher level of granularity and given previous consider-
ations, we focused on LASSO for subsequent prediction analyses.

Compression of OPNMF with resting-state based brain parcellation (RS-
parcellation)

The well above chance level (�.30) adjusted rand index between the
RS-parcellation and the OPNMF indicates that the spatial representations
derived form OPNMF based on structural covariance converge well with
the spatial representation derived from resting-state functional signal in
health adults. Of note, the used RS-parcellations have both been exten-
sively evaluated in their respective studies, namely with regards to sta-
bility and convergence with histological mapping and alternative
parcellations (Bellec et al., 2010; Schaefer et al., 2017). The
RS-parcellations also define spatially homogenous regions, suggesting
that the structural representations identified here capture segregated
patterns of brain functional organization (Sporns, 2013). Thus, the sim-
ilarity between the brain partitions derived from OPNMF and the “opti-
mized” RS-parcellation that we found in the current study allows us to
assume that our OPNMF brain partitions have some biological validity.
Similar observations have been reported recently by Sotiras et al. (2017)
who showed that at low granularity (<60), the components derived by
OPNMF resembles previously evidenced functional brain networks.
Together, these findings thus suggest that OPNMF of VBM data to some
extend captures meaningful patterns of brain functional organization,
both at the network and areal level.

While OPNMF-based factorization and RS-parcellation showing good
convergence, they did not show a perfect agreement. This is in line with
the few multi-modal mapping studies showing that brain maps from
different features (such as structure and function) converge towards
similar brain partition schemes, but also suggesting that each feature
targeting a specific aspect of the brain tissue, each feature can capture a
unique aspect of brain organization (Kelly et al., 2012; Genon et al.,
2016, 2017; Glasser et al., 2016). In other words, different features (i.e.
modalities) are to some extend sensitive to different aspects of brain
organization (for a more detailed discussion see Eickhoff et al., 2017).
From the perspective of data compression, the most efficient partitions
should thus come from the same modality. And indeed, RS-parcellations
provides more homogeneous parcels when assessing resting-state images
than histologically defined brain regions (Craddock et al., 2012). This
leaves the question, whether the amount of transferable information is
still sufficient for a useful representation. Our results also provided evi-
dence that this is the case by showing that a more accurate age prediction
model is built from VBM data when this data is compressed directly as
compared to representing it based on a functional parcellation of the
brain (Fig. 5) even if the latter yields very good accuracies. Overall, in the
context of multivariate pattern analysis, we suggest that brain parcella-
tion derived from one modality is transferable to another modality for
data reduction even though it does not reach within-modality
performance.

Influence of different datasets on the OPNMF

Despite the brain topographical pattern of the OPNMF components
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derived from the two different datasets show similar convergence with
the independent RS-parcellation and general good agreement between
them, they are not perfectly similar (Fig. 1B and C; Fig S5), However, it
has to be noted that the similarity between the factorizations derived
from the two datasets has been measured at a level of granularity that
does not favor reproducibility (even between datasets which are age,
gender and site matched) according to previous work (Sotiras et al.,
2015, 2017; Fig S5). As the granularity increases, the resolution of
structural covariance increases resulting in a finer representation of
covariance patterns, but that are, in turn, more influenced by covariance
trends specific to the dataset used. Thus, we assumed that the difference
in sample characteristics between the two cohorts could explain the
slight differences in the brain topographical pattern of the factorizations.

Impact of granularity on age prediction

Importantly, our study showed that despite the fact that reproduc-
ibility may decrease at high level of granularity (Sotiras et al., 2017),
prediction performance did increase as granularity increases (as previ-
ously suggested by Sotiras et al., 2015). Our results demonstrated that
when the number of components reaches approximately 300–400, pre-
diction accuracy remains largely stable, particularly when the factor-
ization is derived from the same dataset. However, when the
factorization is derived from an independent dataset, a somewhat higher
granularity (i.e., a few more than 400 components) might be required to
reach stability. At a level of granularity around 300–400 components,
OPNMF seemed to factorize the entire voxel-wise data into efficient
subdivisions, which allowed the LASSO regression model to capture only
the relevant features (i.e., ~116 features when predicting MIXED sample
and ~52 features when predicting 1000BRAINS sample) and ignore the
unnecessary/noisy features relatively better than at coarser granularity.
Our finding converges with the study of Franke et al. (2010), in which the
data compression was performed using PCA. These authors found that
the lowest mean absolute error of the prediction analysis was reached at
around 350 components. Of note, this level of granularity (or factoriza-
tion) seems also convergent with the range of subdivisions of the brain
that emerged as stable in functional MRI data, which lies between 200
and 500 parcels (Tucholka et al., 2008; Thirion et al., 2014; Gordon et al.,
2016, Schaefer et al., 2017). We could assume that a lower level of
subdivision (i.e., < �200 components) provides less homogeneous re-
gions (i.e., regions mixing different functional and structural properties,
cf. Eickhoff et al., 2017), while a higher level of subdivisions (>� 500
components) might spatially narrow the components but without
importantly improving the homogeneity within regions. Thus, the cur-
rent study suggests that a factorization of VBM data into 300 to 500
components optimally organizes voxel-wise structural data into homo-
geneous brain regions for age prediction.

Model validation within the same dataset using a cross-validation approach

In the model validation within the same dataset, our study showed
that the performance of the brain age prediction using the framework of
non-negative sparse coding (i.e., non-negative matrix factorization with
LASSO regression model) was similar to the prediction accuracy found in
previous studies (Franke et al., 2010; Liem et al., 2017). It is important to
note that predicting the age of subjects compressed using the components
derived from the same dataset violates the test set independence. Even
though the subjects in the test dataset were separated from the training
dataset at the prediction level, the used factorization reflects the best
factorization of the entire dataset, including the test dataset (Yuan et al.,
2007; Liu et al., 2010). In other words, the test dataset cannot be
considered as strictly unseen because the test data has been “optimally
spatially organized” with its own factorization scheme. Hence, per-
forming the brain age estimations on the dataset compressed using the
same dataset's factorization facilitates optimistic predictions. Therefore,
in this study we compared the performance of the proposed prediction
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framework with this later over-optimal approach.
Our results demonstrated that the LASSO regression, when applied on

the dataset compressed with components derived from an independent
dataset, estimated the brain age with a precision comparable to that
achieved when compressing the dataset with its own factorization. This
finding confirms the previous literature arguing that the ‘projectivity’ of
OPNMF allows the efficient transferability of the factorization onto a new
unseen dataset (Yuan et al., 2007). Our results showed that the differ-
ences between the factorizations derived from the two datasets (cf. sec-
tion 4.3) did not influence the prediction of brain age when transferring
the components onto the other dataset. Furthermore, our supplementary
results (Fig S3) illustrated that the pattern of regions selected by the
prediction approach remained similar when the factorization was
derived from another dataset. That is, the prediction model recollected
the same anatomical regions regardless of which factorization scheme
was applied. Again, this pattern of findings converges with what has been
previously observed in data reduction of fMRI data for subsequent
functional connectivity analyses. Those parcellation studies have
observed that at an optimal resolution, parcellation from one dataset can
provide a relevant spatial representation of the functional signal in other
datasets, despite the topographical pattern of the parcellation between
the datasets being different (Bellec et al., 2010; Finn et al., 2015; Gordon
et al., 2016). Similarly, OPNMF factorization based on a different dataset
did not prevent an optimal compression of the data for age prediction or
the selection of the relevant (anatomical) features. Thus, overall, our
results demonstrated that despite the fact that factorization results from
different datasets may comprise slightly different spatial components,
any of the stable factorizations offers an efficient data compression for
prediction analyses.

Model validation on an independent dataset

In the context of dataset (in-) homogeneity from different protocols,
we observed that the prediction model extrapolated quite well to an in-
dependent dataset (Figs. 6B and 7B: Top left & bottom left plots). Firstly,
model trained on a highly heterogeneous dataset, better predicted the
subjects' age in an independent dataset. Thus, our study supported Liem
et al., 2017's recent suggestions that merging datasets from multiple
protocols could avoid fitting the model to the characteristics of a
particular scanner protocol. In other words, heterogeneous datasets allow
the model to encounter a wider range of variations, helping it to disen-
tangle non-relevant inter-individual variations from relevant variations
for prediction. Surprisingly, model trained on single-site study also per-
formed efficiently, when predicting the age of highly heterogeneous
dataset (OldMIXED). To note, the single-site study consists of 693 sub-
jects between 55 and 75 years (Fig. 1A). Therefore, the model trained on
this dataset encountered a wide range of variation at each age point. We
suppose that this exposure to wide range of variation might have allowed
overcoming the scanner effects with a robust regression model. Thus, we
would recommend to train a given prediction model on a heterogeneous
dataset (either with multi-sited examples or with multiple examples,
ideally both) to ensure that true relevant variations are learned, which in
turn may support good prediction performance. Importantly, the two
cohorts also differed in their age distribution. Therefore, in addition to
the generalizability over different protocols, these datasets also allowed
us to evaluate the generalization of the prediction model over different
age distributions (Figs. 6B and 7B: Top row plots). Not unexpectedly,
models trained on restricted age range of the heterogeneous dataset
(OldMIXED) provided better age prediction for test sample coming from
an independent dataset within the age range of the training sample
(1000BRAINS) when compared to the model trained on broader age
range (MIXED). Again to be expected, models trained on narrow age
range single-site study (1000BRAINS) failed to predict the age of subjects
(MIXED) that were out of the training sample's age range. Together, these
observations further confirmed the general recommendation for the
prediction model to be trained on data comprising variations due to
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distinct parameters (such as the acquisition protocol and demographic
characteristic). Despite the fact that this recommendation might sound
trivial, it actually complements previous recommendations emphasizing
the importance of sample size for good prediction performance (Varo-
quaux et al., 2012, 2017), but further points out that, not the size per se
matters, but the range of variations that are covered.

When applied in a clinical context, i.e. when evaluated on the ADNI
dataset, the proposed framework not only showed good age-prediction
for the healthy subjects but in particular also captured premature aging
in the context of MCI and dementia as indicated by positive BrainAGE
scores (Fig. 8). More specifically, the dramatic atrophy of AD patients was
reflected by a mean BrainAGE score of almost 10 years, which is com-
parable to the findings of a previous study conducted by Franke et al.
(2010). The sensitivity of our framework to brain structural changes in
clinical populations was underscored by the likewise elevated BrainAGE
for MCI participants, which was lower than for those with AD but still on
average in the rage of 5–6 years, i.e., above the MAE in the
population-based samples (Davatzikos et al., 2008; Franke and Gaser,
2012). In other words, our framework accurately ranked the HC, MCI and
AD groups with regards to their clinical progression from healthy to
demented (considering MCI as a transitional stage between normal aging
and dementia; Petersen, 2010). However, statistically discriminating
those individuals among MCI patients who will progress towards Alz-
heimer's disease is a challenging issue (Davatzikos et al., 2009; Petersen,
2010; Gaser et al., 2013; Moradi et al., 2015). While a classification
approach could be more powerful for such purpose than age prediction
(Franke and Gaser, 2014; Wang et al., 2016; Beheshti et al., 2017), the
latter could be combined with the former to quantify deviations from
normal aging trajectories across clinical stages.

Brain age estimation using our framework

Overall, our results demonstrate that models trained on highly het-
erogeneous life span sample (MIXED) can predict the age of any unseen
subject with a precision of 6 years (irrespective of approach i.e., either on
a cross-validation on MIXED dataset or on an independent dataset).
Given the broad age range of the training sample (18–81 years), a pre-
cision of 6 years can be considered as a good performance from the
technical side. Importantly, all previous brain age prediction studies
likewise reported a precision of approximately 5–6 years in the context of
life-span samples. The relationship between GMV and the chronological
age is modulated by many factors (both environmental and genetic fac-
tors (Burgmans et al., 2009; Giedd et al., 2010; Harada et al., 2013;
Luders et al., 2016; Cole et al., 2017)). When aiming to identify the
relationship between brain structural pattern and age, those factors may
introduce noise obscuring the systematic effects of age on brain structure.
In addition to these factors, inclusion of participant with certain char-
acteristics (such as, participants in younger age with unidentified sub-
clinical brain alterations, or older adults representing above-normal (i.e.
“super healthy”) aged participants) might as well deviate the prediction
model to capture the systematic effect of age on brain structure (Burg-
mans et al., 2009). Accordingly, these factors and the noise they intro-
duce could account for the precision gap of 5–6 years in brain age
prediction studies. That is, the limited precision of life-span age predic-
tion may less relate to technical limitations but rather indicate that
structural changes over a period of around 5 years are smaller than
variations related to confounding factors that would represent “non-rel-
evant” noise to the model. However, this hypothesis might not hold true
for all life periods. For instance, one can observe dramatic age-related
structural changes in childhood (cf. Erus et al., 2015) the late life pe-
riods (cf. the higher precision of ~4 year MAE for 1000BRAINS or
MIXED_55–90), while age-related grey matter changes could be rela-
tively minor during early and middle adulthood (Schippling et al., 2017).
Further examinations of these issues in future studies could provide
better understanding of neurobiological aging. Nevertheless, in the scope
of the present study, these confounding factors do not prevent our
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framework (combining OPNMF with sparse regression model) to accu-
rately capture normal variations related to age and deviance from normal
variations in clinical populations.

Identification of the regions influencing the prediction

Our results revealed that the regions involved in the age prediction
model in 1000BRAINS were sparser than those underlying the prediction
of age in MIXED. In contrast, most of the brain regions (representing 73%
of the total grey matter volume) seemed to underpin the prediction when
the model was trained in the MIXED dataset (which covers the adult
lifespan with subjects between 18 and 81 years old). Put simply, the
model cannot be consistently restricted to a few regions for inferring
subjects' age when the cohort covers the adult lifespan. Such a pattern
could argue for a more complex pattern of grey matter variations across
the whole adult life span than in the later life periods. Previous studies
have demonstrated that many different patterns of changes occur across
the adult life span in grey matter volume with notably some regions
showing monotonic decrease of GM and other showing a clear inverted
U-shape grey matter volume (GMV)-age relationships or a “delayed
decline” (Ziegler et al., 2012, 2014; Douaud et al., 2014). Furthermore, as
aforementioned, several factors may induce brain structural variations in
the young and middle-aged adult brain, such as life style and environ-
mental factors (Miller et al., 2016) complicating the relationship between
age and grey matter.

In our study, in addition to the regions highlighted for age prediction
in older sample, some regions, such as the amygdala, and the superior
parietal lobule further contributed to age prediction when the model was
trained on the young and middle age adults (MIXED) dataset. Interest-
ingly, the amygdala is one region where GMV has been found to increase
with age in relatively younger samples (8–30 years old (Ostby et al.,
2009);) and some authors have noted no age-related GMV changes in the
amygdala in older samples (Good et al., 2001). Furthermore, structural
covariance of the amygdala (with other brain regions) is known to be
modulated by several factors such as gender (Mechelli, 2005). Thus, we
could assume that, in a prediction model mixing genders, the amygdala
could be selected as an indicator modulating the pattern of relationship
between other brain regions and age, despite this region per se does not
show a strong, linear and universal GMV decrease with age. Accordingly,
when examining the pattern of association between GMV and age, we
observed a mild general linear decline of grey matter volume with age,
but with a high variance across the subjects in the MIXED sample (see Fig
S4) suggesting that very different age-related grey matter change pat-
terns might be observed in this brain region. Such a pattern allows us to
assume that the GMV in the amygdala, taken as isolated information,
cannot significantly contribute to the age prediction, particularly in the
case of older participants. In other words, we assume that the grey matter
changes in the amygdala are diverse and occur mainly in the young and
middle age adult lifespan rendering this specific region informative for
predicting age in the whole adult life span sample in combination with
information from other regions. However, on its own, this region would
not be particularly informative for age prediction in older populations.

The superior parietal cortex is another example of regions contrib-
uting to the prediction analysis when the training sample consisted of
young adults in addition to the older adults, but not when the model was
trained on older adults only. Terribilli et al. (2011) conducted a study
mainly focusing on young and middle age adults (18–50 years old), in
which GMV of the lateral parietal cortex (i.e., supramarginal, angular and
superior parietal cortex) exhibited a nonlinear relationship with age. The
non-linear trend reported by the authors could be explained by a
quadratic fit, that is, GMV followed a linear decline until the end of the
fourth decade and then showed a mild increase. When examining the
relationship between GMV and age in the superior parietal region in our
study, we observed a similar trend (see Fig S4), in which the mean GMV
of the superior parietal region showed a sharp decrease until 40 years of
age, but less pronounced change with age in later life. Thus, despite the
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fact that prediction models in general, (specially LASSO regression
models) are inherently linear, identification of GMV in the superior pa-
rietal cortex as relevant for age prediction converges with previous data
demonstrating that structural changes in this region occur mainly in the
first decades of adult life, but not in periods later in life. Thus, visually
examining the pattern of associations between GMV and age in regions
contributing to the prediction in MIXED suggest that some regions may
be informative for their relatively systematic changes in the first period of
adult life (such as the superior parietal cortex) while others regions could
contribute by introducing complementary information (such as the
amygdala) despite not exhibiting a clear linear relationship with age
across the sample.

The pattern of regions consistently contributing to the prediction in
the older sample appeared more spatially specific. Many of the regions
highlighted by these analyses such as the hippocampus, the temporo-
occipital region and the medial superior frontal gyrus have been shown
to be strongly affected by aging in the older life period and more spe-
cifically, to follow a strong linear decrease in this life period (after 40–50
years old; Raz et al., 2010; Douaud et al., 2014). However, some other
regions, such as the regions around the central sulcus are not known to
show systematic change with age in later life period. Thus, the pattern of
regions contributing to the predictions in 1000BRAINS suggests that
when the training sample is restricted to older populations, the model can
be restricted to a few regions, whose grey matter volumes is systemati-
cally affected by the aging process in the later life period, as well as other
regions that might not appear particularly informative form a neurobi-
ological point of view but complement the information conveyed by the
former regions.

Interpreting the multivariate brain pattern weighting in the predic-
tion is usually not recommended (e.g. (Haufe et al., 2014) since the
prediction is underlined by the combination of several element/feature
(i.e. voxels in a voxel-wise representation of the data and components in
the present study) and that the individual elements on themselves, taken
in isolation, may not convey any neurobiological relevant information.
However, we would argue that the relationship between the brain and
the predicted variable should not be kept as a conceptually locked black
box, that is, the multivariate aspect of the prediction does not imply that
we should not at least try to understand why the given pattern is relevant
for the model. As a metaphor, if a model uses the variable “number of
children” and “country” for predicting the age of a person, obviously the
variable “country” on its own is not informative for predicting the age of
a person, in contrast, the number of children is partly informative. Hence,
examining the combination of those two variables for predicting the age
of a person can provide us more insight by suggesting that the relation-
ship between age and the number of children is modulated by cultural
factors. Similarly, the pattern of relationship between grey matter vol-
ume and age is assumed to be modulated by several factors, but whose
influence remained relatively poorly understood. However, the current
framework promoting relatively localized component as relevant fea-
tures could help to explore this issue in future studies (such as how the
complex pattern of structural variations in the amygdala influenced by
gender can contribute to age prediction in healthy adults).

Conclusions and practical considerations for future studies

In conclusion, our study, which evaluated OPNMF-based compression
of VBM data for age prediction in two different healthy adult cohorts,
opens several new perspectives. First, we demonstrated that OPNMF
compression allows age prediction with a precision that is well compa-
rable to that achieved following PCA compression but yields substantially
more interpretable results. It also outperformed an atlas-based approach
based on resting-state whole-brain parcellation, even though the preci-
sion obtained by cross-model atlas based data compression is in itself
remarkable. Considering the declining return of investment when going
to higher granularities, we would thus suggest that OPNMF at a granu-
larity of 300 and 500 components may provide the optimal data
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compression for age prediction.
While the exact OPNMF solution obviously depends on the examined

sample, we here showed that prediction accuracies are basically
uncompromised when employing a factorization derived from an inde-
pendent dataset. That is, a factorization derived from one dataset can be
used to efficiently compress VBM data of a second, independent dataset
in a prediction framework. To note, the MIXED dataset used in the cur-
rent study covers a wide range of variation over a broad age range while
the (single-site) 1000BRAINS datasets can be assumed to capture struc-
tural covariance in older populations. Accordingly, the factorization
derived from MIXED could be used for data compression in age predic-
tion studies across adulthood whereas the factorization derived from
1000BRAINS may be particularly well suited for studying the aging
brain. In addition to structural covariance-based factorization, our study
offers robust prediction models trained on life span sample from het-
erogeneous sites (MIXED), an advantage on which future studies could
capitalize to better understand the effects of different factors on the
neurobiological aging.
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